Chapter 3

Optimized Solution

3.1 Introduction

As indicated in the previous chapters, various numerical strategies have been employed for
reducing 1-port and 2-port scattering data for both nonmagnetic and magnetic materials.
The vast majority of the work in this area has involved the determination of permittivity
and permeability by the reduction of scattering data frequency by frequency, that is, by the
explicit or implicit solution of a system of nonlinear scattering equations at each frequency
(see [11,33]; as an example of a multifrequency approach see Maze et al.[15]).

What is lacking in the literature are practical, robust, numerical reduction techniques
for more accurate determination of permittivity and permeability in transmission lines.
Reliable broadband permeability and permittivity results for low-loss, medium-to-high di-
electric constant materials are hard to obtain with transmission line techniques. Coaxial
line measurements are particularly hard to obtain due to air gap influences and overmod-
ing. Traditional transmission line numerical techniques have difficulties to an extent that
render these techniques of limited use for low-loss materials and for high dielectric constant
materials. Difficulties arise with these methods for magnetic materials in that numerical
singularities can occur at frequencies corresponding to integral multiples of one half wave-
length. These instabilities arise from the fact that for low-loss materials both Sa1 and Syy
become equations for the phase velocity, and the permittivity and permeability therefore
enter as a product. These instabilities limit the acquisition of precise broadband dielec-
tric and magnetic results in the neighborhood of a resonance. Another problem pertains
to high dielectric constant materials. High dielectric constant materials are usually hard
to measure since the theoretical models are limited to a single, fundamental mode and
the data contain both fundamental and higher order mode responses. Further, point-by-
point reduction techniques for magnetic materials contain large random uncertainties due
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This chapter presents a method for obtaining complex permittivity and permeability
_ cattering parameter data on isotropic, homogeneous materials using nonlin-
Llal regression. We solve the scattering equations in a nonlinear least-squares sense with
o regression algorithm over the entire frequency measurement range. The complex per-
nittivity and permeability are obtained by determining estimates for the coefficients of
, truncated Laurent series expansion for these parameters consistent with linearity and
causallty constraints. The procedure has been successfully used for accurate permittivity
and permeability characterization of a number of different samples where point-by-point
schemes have proven to be inadequate. The details of the numerical method have been
Presented in [36]. The problem applied to microwave measurements 1s presented in this
chapter. The method can easily be extended to the analysis of multi-mode problems and the
Jdetermination of experimental systematic ancertainty. The novel features of our algorithm

Jectra from S

are:

o The algorithm finds a “best {it" to the 2-port scattering equations using a nonlinear

least-squares solution for the permittivity and permeability.
o The algorithm uses fitting functions that satisly causality requirements.

¢ The numerical technique allows slight variations in the sample and reference position

lengths to compensate for measurement errors and sample imperfections.
o The method allows the de-emphasis of frequency poiuts with large phase uncertainty.
o Statistics related to the solution parameters are automatically generated.
e The technique can force positivity of the fit functions.

o It is possible to determine both complex permittivity and permeability from measure-
ments of a single scattering pavameter on a |-port or a 2-port taken over a frequency

band.




3.2 Model for Permeability and Permittivity

In the optimization procedure the S-parameter eqs (2.31) through (2.33) for single-mode
problems, or eqs (2.21) through (2.24) for problems with higher order modes are solved for
the material parameters by the optimization routine. For higher order mode problems the
matrix elements A, in eqs (2.21) through (2.24), which corresponds to the voltage in each
mode, can be determined by the optimization routine. However, we usually consider only
the primary mode.

The unknown quantities are L,, L,, L, X, and ,u;?(w) and €x(w). Some of these parame-
ters, such as the lengths and cutofl wavelength, are known accurately within measurement
uncertainty. Obviously the parameters of interest cannot be allowed to vary into non-
physical realms. The problem is to use an optimization routine to determine the model
parameters that are consistent with the scattering data and the physics of the problem.

3.2.1 Relaxation Phenomena in the Complex Plane

The numerical model requires an explicit functional form for 3 and € to reproduce the
four S-parameters consistent with the data. for all the n frequency observations.

The general form for p}h(w) and ¢p(w) should be causal see Appendix C: that is, it must
satisfy a Kramers-Kronig relation. If the zeros and poles of a complex function are known
over the complex plane, the function itself is known.

The Laplace transform of the real, time-dependent permittivity satisfies

€(r.s) = /000 e(r,t)e stdt . (3.1)

For stability, there can be no poles in the right-half side of the s-plane. Since €(t) 1s real
it can be shown that the poles and zeros are confined to the negative real s-axis of the
s-plane, and the poles which are off the real s- axis must occur in complex conjugate pairs
[37].

Assuming linear response a constitutive relationship in an isotropic medium between
the displacement and electric fields is

- —

D(F,1) = e F(7.1) + (0/% G(r)E(7.t - 7ydr . (3.2)
0
With this definition the permittivity is
lw) = 1 +/ G(r)e*dr | (3.3)
0

The response function G(7) for an incident electric field can sometimes be represented as
a series of damped sinusoids of the form

-~
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G(t) = ZAn exp(—(an + Jjbn)t) - (3.4)
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for stability (no increasing time domain exponentials) there can be no poles or zeros in the
right half-side of the s-plane [37], [38]. In order to maintain the reality of €(s), any poles
off the imaginary axis in the w-plane must be conjugate poles of the form w = ja £ b where
¢ and b are real, positive numbers as indicated in figure 3.1. These conjugate poles are of

the form ) 1
s+a+jb+s+a—jb’ (3.6)
and are related to resonant phenomena.
We assume that the permittivity can be expressed as
. (Jw + zn) 1 |
¢ =C =+ : — + = . . 3.7
i H(]erl)n) 721[]“)+an+]bn Jw+an—1bn] (37

Here =, and p, are the zeros and poles due to damped exponentials respectively, (a, £7bn)
are the complex conjugate poles. and (" 1s a complex constant.
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Figure 3.1: Poles (X) and zeros (O) in the complex s-plane and conjugate poles off the real
s-axis.

For more complicated polarization phenomena other relations for permittivity could be
used. For a continuous distribution of relaxation times

€ = €y +[€(0) — €] /0o —¥y(—r)——dr , (3.8)

o 1+ w?r?

"o_ e "‘)Ty(T)

¢ = [€(0) — em]/o T (3.9)
where y(7) is a distribution function. Various expressions for y yield various relations for
permittivity. Presently we use eqs (3.11) and (3.12) in our calculations. The Havriliak-
Negami model for materials assumes a single nonsimple pole on the negative, real s-plane
axis:

A
S T YT

where .3 and a are in the interval [0,1] and B is real. Limiting cases of this model are
(1) the Cole-Davidson model when o = 0; this model works well for some liquids and
solid polymers, (2) the Cole-C'ole model when 3 = 1; this model has been used to describe
relaxation behavior of amorphous solids and many liquids. A simple Debye model (3 =1
and « = 1) is very limited and works well only for materials that contain a single relaxation
time in the frequency range of interest.

Heterogeneous materials and polymers usually have a very broad relaxation spectrum
and as such have a response of the form of a power law such as s=2. This behavior can be
obtained from the Cole-Davidson model when |Blw >> 1.

In our present algorithin we assume a more general model than the single Debye relax-
ation model a truncated Laurent series is used for fr(w) and €(w). This expansion has

=

€ =

(3.10)
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yielded excellent results
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where Bi are real numbers. The pole information yields constraints on the constants used
in the Laurent series expansion. For example, it is required that B is a real number.

For a typical measurement on a network analyzer there may be 400 frequency points and
ot each point all four scattering parameters are taken. The problem is overdetermined since
for n frequency measurements, if we assume known lengths, there are 8n real equations
for the unknown quantities in the Laurent series. This over determination can be used
ot frequencies in the gigahertz range to find corrections to sample position and cut oft

(3.12)

wavelength.
The approach for determining the complex parameters Aj;. B; is to minimize the sum

of the squares of the differences between the predicted and observed S-parameters,
min H Zgij - ﬁij H s (313)
)

where the measured vectors are denoted by S:U' = (S,-j(wl),Sij(wg), vy Siz(wn)) and where
P is the predicted vector. Hence, the problem consists of finding the norm solution to

these equations.

3.3 Numerical Technique

3.3.1 Algorithm

The solution currently uses a software routine called orthogonal distance regression pack
ODRPACK [39] developed at the National Institute of Standards and Technology. This
routine is an extended form of the Levenberg-Marquardt approach. This procedure allows
for both ordinary nonlinear least-squares, ‘0 which the uncertainties are assumed to be
only in the dependent variable, and. orthogonal distance regression, where the uncertain-
ties appear in both dependent and independent variables. First-order derivatives for the
Jacobian matrices can be numerically approximated (finite difference approximation) or
can be user-supplied analytical derivatives. The procedure performs automatic scaling of
the variables if necessary, as well as determining the accuracy of the model in terms of ma-
chine precision. The trust region approach enables the procedure to adaptively determine
the region in which the linear approximation adequately represents the nonlinear model.
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Iterations are stopped by ODRPACK when any one of three criteria are met. These
criteria are: (1) the difference between observed and predicted values is small, (2) the
convergence to a predicted value is sufficiently small, and (3) a specified limit on the
number of iterations has been reached.

Initial guesses for ¢} and u} are obtained from explicit solutions of Stuchly [7] or Wejr
[6]. The most significant input parameters for modeling permittivity and permeability are
the initial values for A; and B;. Sensitivity to the initial solution for these parameters is
discussed below. All additional parameters are initialized to 0. »

When measurements of length and scattering parameters of a sample are taken, there
are systematic uncertainties.

An orthogonal distance regression model provides the modeler with the additional abil-
ity to assume that the independent variable, in this case, frequency, may contain some
uncertainty as well. Allowances for these types of uncertainty can, in some cases, greatly
improve the approximation. For this model and the samples tested, the errors in the in-
dependent variables are sufficiently small that an ordinary least-squares approximation is
adequate.

Model parameters such as sample length, sample position in the waveguide, and cutoff
wavelength could contain a systematic uncertainty. These parameters were allowed to
vary over a limited region, and the optimization procedure chooses optimum values for the
parameter. This procedure assumes that systematic measurement errors can be detected by
the routine. For example, inserting a sample into a sample holder introduces an uncertainty
in the sample position L,, so we include with L; an additional optimization parameter B
in R, to account for positioning uncertainties,

Ry = exp(—7[L1 + BL1]) . ' (3.14)

Also for R,
R2 - exp(—‘yo[Lz + ﬂLg]) . (315)

The routine requires that the length corrections be within a prescribed range which repre-
sents physical measurement uncertainty. The length of the sample L is completely deter-
mined by

L =1Ly~ (Li+ Ly + B + BL2) (3.16)

and is also implicitly parameterized by the values of Br1 and Bp,.

Due to inaccuracies in machining of the sample holder there is an uncertainty in the
cutoff wavelength of the guide. We account for this by the introduction of an additional
optimization parameter A, — A.+/3,. We constrain this variation to be within measurement
accuracy.

The model can use various combinations of the available data to estimate both the
relative permeability and permittivity from scattering data. For example, S,; or S;, alone
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Figure 3.2: Predicted (solid line) and observed (dots) parameters for a barium titanate
compound (a) and cross-linked polystyrene in (b).

can be used to obtain both permeability and permittivity. This can be contrasted with
point-by-point techniques where both S;; and Sy, are required. Also, magnitude alone
can similarly be used. Magnitude data have the advantage of requiring no reference plane
rotation.

The technique works well for short-circuit line measurements. For short-circuit lines it
is possible with this technique to obtain both the complex permittivity and permeability
from a single broadband measurement on one sample at a single position in the line.

3.3.2 Numerical Results

The model predictions are formed by inserting eqs(3.11) and (3.12) into (2.31) and (2.33)
or (+.7) and then finding the unknown coefficients in the equations for €; and pk that
produces the least square error. In figure 3.2 the experimental results are given for a
barium titanate compound and cross-linked polystyrene. These samples required 21 and
40 iterations respectively.

The difference between the predicted S-parameter and the observed values reveals the
presence of systematic uncertainty, as shown in figure 3.3, in the automatic network analyzer
(ANA). Additional tests revealed the source of the systematic error did not appear to be
related to the material tested in the waveguide. In fact, uncertainties produced for the cross-
linked polystvrene sample closely resemble the S-parameter data for an empty waveguide;
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Figure 3.3: Systematic uncertainty as indicated by the residual plot (the difference betweer

the observed and predicted values) for the case on an empty waveguide. The solid line i¢
at 0 residual.

we conclude therefore that much of the systematic error is due to calibration uncertainty
and joint losses at connector interfaces. For the barium titanate compound sample there
is both the fundamental mode response and smaller resonances related to higher-order
modes. As shown in figure C.1, the model interpolates a fundamental mode. This raises
the possibility of extending the model to incorporate higher-order modes by extending the
theoretical formulation of the problem.

It is easy to move the sample in the holder inadvertently when connecting the sample
holder to the port cables. Positioning errors of the sample in the air line can result in large
error in computed material parameters. The numerical algorithm can adjust for positioning
errors by adjusting L, or L, slightly. The effects of positioning error can be seen in figure

3.4.

In this example the routine predicted that the position of the sample was off by 0.8
mm.
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Figure 3.4 Measured real part of Sy, measured (. . . . ) and predicted (— ), for

a glass sample (a) with positioning error for L, and (b) the solution when the algorithm
adjusts for the positioning error.

34 Permittivity and Permeability

3.4.1 Measurements

In this section we present the measured and calculated permittivity and permeability.
Cross-linked polystyrene and the barium titanate compound are nonmagnetic and therefore
iy = 1. Comparison of the optimized solution to a point-by-point solution is shown in figure
3.5. In figures 3.6 through 3.9 results for four samples are given.

As a check we made an independent measurement of the barium titanate compound in
an N-band cavity where the results were ey = 269 at 10 Ghz. This result can be compared
to the results in figure 3.6. Finally a result of another barium titanate compound is given

below.

3.4.2 Robustness of the Procedure

Since the transmission coefficient contains a periodic component, there is more than one
solution to the svstem of equations. Fach root of the equation has a neighborhood around
which convergence will occur for initial guesses in that region. The robustness of a mathe-
matical procedure is related to how well the algorithm treats the neighborhood around the
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Figure 3.6: Permittivity for barium titanate compound (a) and cross- linked polystyrene
(b), point-by-point method (. . . .), optimized solution (—-).
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correct root. The existence of alternative optima in the mathematical model requires an
accurate initial guess in order to converge to the correct solution. Typically convergence
occurs after about seven iterations. The use of constraints and the large number of equa-
tions enhances the uniqueness of the solution by reducing the dimensions of the solution
space.

In point-by-point methods the correct solution 1s selected from the infinity of possible
roots by calculating the slope of the phase curve and comparing the measured and calculated
group delays. A group delay constraint is also used as a way of determining the physical
solution.

The numerical effectiveness of the entire permeability and permittivity calculation de-
pends on the robustness of the ODRPACK procedure and, more significantly, the robustness
of the mathematical model. For the samples used in this study, the robustness of the proce-
dure depended on the sample. For the materials with low dielectric constant the procedure
readily determined a solution for a variety of input values with a large radius of conver-
gence. For materials with higher dielectric constant, the procedure often converged quickly,
although the existence of alternative local optima in the mathematical model required some
testing to make sure that the converged root was the correct root.
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3.5 Discussion

An optimization approach to the solution of the scattering equations appears to be a viable
alternative to point-by-point techniques. The technique allows a stable solution for a broad
range of frequencies. The method works particularly well for short-circuit line measure-
ments. Unlike the point-by-point short-circuit method which requires measurements on
two samples or in two positions, the optimized solution can obtain complex permittivity
and permeability on a single sample at a single position.

The reflection (5;;) data are usually of lesser quality than the transmission data (Sy;)
for low-loss, low- permittivity materials. Therefore S;; need not be included in the solution
for low-loss materials. However, reflection data S;, and S, are very useful in determining
the position of the sample in the air line as indicated in figure 3.7. The technique was
successful for many isotropic magnetic and relatively high dielectric constant materials.
The addition of constraints to the solution is powerful in that it further limits the possible
solution range of the system of equations and enhances the uniqueness of the solution. The
use of analytic functions for the expansion functions allows a correlation between the real
and imaginary parts of the permittivity and permeability. The results shown in figures
3.5 through 3.6 indicate that the method can be used to reduce scattering data of fairly
high dielectric constant materials. In fact, in some cases the optimized procedure yields
solutions when the point-by-point technique fails completely.

Why does an optimization approach, in many cases, reliably reduce data on higher
dielectric constant materials (e > 20), whereas point-by-point techniques generally fail?
Scattering data for higher dielectric constant materials contain responses to both primary
mode and higher order modes. As indicated in figure 3.2 for the barium titanate compound,
the optimization routine selects the primary mode data and places less weight on the higher
mode resonance data.

The optimized technique can be used to treat problems where sample lengths, sample
holder lengths, and sample positions are not known to high accuracy. Permittivity and
permeability can be found from the equations without specifying either sample position or
sample length. This result could find application to high-temperature measurements.

Higher-order modes propagate in samples when two conditions are met. The frequencies
must be above cutoff in the sample, and there must be inhomogeneities or asymmetries in
the sample to excite the higher order modes. Higher-order modes can be incorporated
into this type of model by letting the optimization routine select the power in each mode.
Higher-order mode models are a subject of our current research.
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.are homogeneous and isotropic; (3) only transverse electric fields are present. Under these

Chapter 4

Short-Circuit Line Methods

4.1 Theory

In this section we review the mathematical formalism for short-circuit measurements. We
consider a measurement of the reflection coefficient (S11 for a shorted two-port) as a function
of frequency. We begin with a mathematical analysis of the electromagnetic fields in the
sample. The details of the field model have been presented previously [26] and only the
most essential details will be presented here.

Assumptions on the electric fields in regions [, II, and III shown in figure 4.1 may be
made as follows: (1) only the dominant mode is present in the waveguide; (2) the materials

conditions the electric fields in these regions may be expressed as:

Er = exp(—v0z) + Si1 exp(v02) , (4.1)
Ep = Crexp(—vz) + Cyexp(yz) , (4.2)
Errr = Cyexp(=0(z — L)) + Cs exp(1o(z — L)) . (4.3)

We wish to determine the coefficients in eqs (4.1) through (4.3) by imposing boundary
conditions on the system of equations. The boundary conditions are:

e Tangential component of the electric field is continuous at sample interfaces.
e Tangential component of the magnetic field is continuous at sample interfaces.

o The electric field is null at the short-circuit position (perfect reflect).
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Figure 4.1: A transmission line with a short-circuit termination.

Expressions for the coefficients in eqs (4.1) through (4.3) are presented in reference (26].
Matching boundary conditions of the field equations at the interface and the reflect
yields an equation for the permittivity and permeability in terms of the reflection coefficient,

p=351=Ch. With the sample end face located a distance AL from the short,

o - —2ﬁ6+[(6+1)+(6—1)ﬁ2]tanh7L (4.4)
ML= T 6+ 1) — (6 - 1) tanhyL '
where -
3= , (4.5)
Yokt
and
§ = exp(—27,AL) . (4.6)

In terms of hyperbolic functions

_ tanh vL + BtanhyoAL — 3(1 + Btanh~L tanh y0AL) (4.7)
7 tanh~yL + Btanh AL + (1 + FtanhyLtanhyoAL) '

S, for a matched two-port can be obtained as a special case from eq (4.4) by letting 6 — 0.

Although in the derivation of eq (+.7) it is assumed that the sample plane coincides
with the measurement calibration plane, this is not the case in general; however, we can
transform the reference plane position by a simple procedure. To accomplish this, we write
the most general expression for the reflection coeflicient as
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Sll(trans) = Rfsll ’ (48)

where S}14rqns 18 the reflection coefficient at the calibration reference plane position,

Ry = exp(=7.L1) , (4.9)

and L, is the distance from the calibration plane to the sample front face. Equation (4.8)
transforms the reflection coefficient from the calibration plane to the plane of sample fropt
face. It is of interest in many applications to eliminate the distance L, from eq (4.8). This
can be accomplished by measuring S;; of the empty sample holder,

Si1(empty) = — exp(~27,[L1 + AL + L]) = —exp(—=2yoLair) (4.10)
and therefore the ratio of the filled to empty holder reflection coefficient is
Sll(trans)
- —— = —exp(2v[AL + L])S), . (4.11)
Sll(empty)

If both the permeability and the permittivity are required, measurement data for two
different short-circuit positions are needed. Note that standing waves can be formed in the
region between the sample and short-circuit and between the calibration plane and sample
front-face. Therefore certain frequencies, depending on sample length and the other lengths,
will give better results for permittivity and other frequencies better results for permeability.

The position of the short-circuit is a low electric field and high magnetic field region and
a position A/4 from the short- circuit is a high electric field and low magnetic field region.
Therefore as frequency permits, for permittivity measurements the sample should be moved
away from the short-circuit termination. Permeability in isolation can be obtained with
the sample at the short-circuit position. Of course when an ANA is used measurements
will be taken at many combinations of field strengths and therefore the uncertainty will
vary with frequency.

4.1.1 Two Samples of Different Lengths

It is possible to solve for the permeability and permittivity when the scattering parameters
with samples of two differing lengths are measured. To see this, let us consider two samples,
one of length L and one of length L as indicated in figure 4.2.

Then for independent measurements on the two samples we have

r-2z:

= — 4.12
11(1) 1 — F22 ) ( )

and
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Figure 4.2: A transmission line with a short-circuit termination in two sample magnetic

measurements.

Z =exp(—vL) . (4.13)

The reflection coefficient I is given by eq (2.37). The scattering 1-port parameter is given

by
B F _ Z2a

S . 4.14
1@ = 117 ( )
Therefore we can solve for Z in eq (4.12),
-T
72 = EL : (4.15)
Siuml -1
and substitute it into eq (4.14) to obtain
_ [sum—rr
Shpr-1
511(2) = (416)

2 4
1 _ F sllgl!"r
S“(,)I‘—l

Equation (4.16) is solved iteratively for I' and then Z is found from eq (4.15). The permit-
tivity and permeability can then be obtained, if we define

1
LIS [—ln :

A? 27 L (Z] ’ (4.17)
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[ - =], (4.18)

(4.19)

where Ay is the free-space wavelength and A, is the cutoff wavelength. Equation (4.17)
has an infinite number of roots for magnetic materials because the logarithm of a complex
number is multi-valued. In order to pick out the correct root it is necessary to compare
the measured to the calculated group delay.

4.1.2 Single Sample at Two Short-Circuit Positions

It is possible to obtain an explicit solution to eq (4.4) when measurements at two different
short-circuit positions are taken. The explicit solution is obtained by solving eq (4.4) at a
given short-circuit position (position 1) for tanhyL and then substituting this expression
into eq (4.4) at another short-circuit position (position 2) as indicated in figure 4.3.

For two different short-circuit positions at the same frequency we obtain p1 and p, for
positions 1 and 2:
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286 — [(6 + 1) + (& — 1)B*tanh yL (4.20)

_ (
P = 38+ (6, — 1)8% — (6, + 1) tanh L
286, [(62+ 1) + (8 — 1)#*] tanh L
2= 98 +((8, — B - (& + DtanhAL ’
where 8,68, denote the phases calculated from eq (4.6) for AL,,AL, respectively. These
equations yield

(4.21)

— Qﬂ(51+P1)
tanhyL = B2(py + 1)(8 — 1)+ (1 — p1)(61 + 1) ) (4.22)
LI (U 28(8, + p1) .
T (t " [52(p1+1)(51 —1)+(1—p1)(6l+1)] +2n J) ) (4.23)

where n is an integer. Since the arctangent is multi-valued, the correct value of n is
determined from the group delay arguments given in section 3.2.1. Also

61(62(py — p2) + prp2 + 1 — 2p2) — (62(p1(p2 = 2) + 1) + pa — p1) ' (4.24)
61(82(p1 — p2) + pr1p2 + 1 + 2p2) — (62(pr(p2 +2) + 1) + p2 — p1)

§ =

Once 8 is known, eqs(4.22) and (4.24) can be used to find permittivity and permeability.

4.2 Measurements

In the SCL technique the scattering parameter Sy, is measured broadband, with the sample
at a given position in the sample holder. The distance from the sample to the short-circuit
termination must be known to a high degree of accuracy. If both permeability and the
permittivity are required then the sample must be moved in the line and the S-parameters
again taken.

Depending on the position of the short-circuit, the sample may be immersed in either a
region of high electric field or high magnetic field. A strong electric field is advantageous for
permittivity determination, whereas a strong magnetic field is advantageous for permeabil-
ity determination. Generally, the sample end will be in a region of high magnetic field when
the sample is in closest physical contact with the short. It is possible to take advantage
of the fluctuating electric and magnetic field distributions when performing permittivity
and permeability measurements. When taking broadband measurements on an ANA it is
possible to predict when the sample is immersed in the various field strengths. Then one
can select the measurements to be used for permittivity and permeability calculations [35)].

Measurements were made on an ANA for various samples. Using eq (4.4) we obtain
the permittivity and permeability which are shown in figures 4.4 and 4.5.
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4.3 Uncertainty of Short-Circuit Line Measurements

For magnetic materials it is necessary to make two independent measurements at a given
frequency. Independent measurements can be obtained either by measuring samples of two
different lengths or by taking measurements of a given sample at two locations in the line.
The special case of measurement of two samples of varying lengths (L;, L) can be obtained
from the solution presented below by substituting L — Ly, v — vand AL — Ly — L.

The uncertainty involved in two position measurements is explored in this section. The
uncertainty incurred with the equations expounded in this report is estimated. The sources
of uncertainty in the SCL measurement include

e Uncertainties in measurements of the magnitude and phase of the scattering param-
eters.

o Gaps between the sample and sample holder.

¢ Dimensional variations in the sample holder.

e Uncertainty in sample length.

e Short-circuit and line losses and connector mismatch.

e Uncertainty in positions of the reference plane and sample in holder.

Adjustment for errors due to gaps around the sample is obtained from equations avail-
able in the literature [33,34,35]. The formulas given in the literature generally under-correct
for the real part of the permittivity and over-correct for the imaginary part of the permit-
tivity. All measurements of permittivity are assumed to have been corrected for air gaps
around the sample before the following uncertainty analysis is applied.

In order to evaluate the uncertainty introduced by the measured scattering parameters,
we assume that a differential uncertainty analysis is applicable. This assumption implies
that uncertainties are of small enough magnitude so that a local Taylor series can be applied.
We assume that a Taylor series approximates deviations of the function from a given point.
We assume that the worst case uncertainty due to the S-parameters and sample lengths
can be written

Aeg 1 Oeg : O€g : Oeq 2 0¢ 2
= —\[| 5 a-AlS —R Al =R R
o\ (6|5n| | 11|> + (aouA n) +{3rAL) +{3; Ad) , (4.2

Aely, 1 Al )2 ( el )2 (ae',g 2oreen . \?
==\l e 815 + | == A0 —=AL ~RAd _
o e <a|5u| |5l 96, -0n) T\GL +5g2d) . (426)
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where Af is the uncertainty in the phase of the scattering parameter, A|S);| is the un-
certainty in the magnitude of the scattering parameter, Ad is the uncertainty in the air
gap around the sample, and AL is the uncertainty in the sample length. The gap correc-
tion uncertainty is given in [26]. The uncertainties used for the S-parameters depend on
the specific ANA used for the measurements. In general uncertainties due to flange bolt
torquing and connector repeatability must be added to these uncertainties.

Let us define the variables

a = tanhvyL , ‘ (4.27)

b =tanhyoAL . (4.28)

We wish to obtain explicit relations for the derivatives of € and px with respect to inde-
pendent variables |Syy(;)| and 8;, 2 = 1,2. We define Sy1(y) as the reflection at short position
1 and Syy(2) as the reflection at short position 2. Next define

_ tanhyL 4 BtanhyAL — (1 + Stanh yL tanh YoAL)

B -Su=0. 4.2
tanhyL + BtanhyAL + B(1 + BtanhyL tanh y,AL) Su=0 (4.29)

We assume the following as independent variables Sy;(z),2 = 1,2, L, AL, and d. Derivatives
of eq (4.29) with respect to the independent variables can be found analytically. By the
chain rule we have

0f da 0y  Of aﬂ] Opg +[8f6a oy 0f 0B Oeg

50 v Bun ¥ 88 Bur) B8 ()] T 80 By 06, T 98 Beg. S| PV (30)

This equation is evaluated at position one.

0f 8a 0y _B_f ap Opg + O_fﬁ 0y ﬂaﬂ Oeg
da 9y dpg 353#;{1 9|S1(m)| ~ Oa Oy dep aﬂach 0|S11(m)|

bim bam

= exp(70,.) . (4.31)

This equation is evaluated at position two. The four derivatives can be written

Opg Oeg :
a +a = exp(70,)61m , 4.32
i) T 0Sn] ST (432)
Oug Oeg .
b +b = exp(10m)b2.m , 4.33
BBl P Bmr] - PO (4:33)

where é; ., is the Kronecker delta function.
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At the first position the derivatives with respect to length are
Of Oa Oy  Of 0B, Opg 0f Oa 8y Of 08, Oeg Q{?ﬁ

525755 " 080ua 9L T Badnoen T 090 "L T dadl (4.34)

or

Oug aeR of 0a
“or "L T daor
and for the second short-circuit termination position ‘
6/14}2 aCR af aa _
by —= L + by—— e + == 94 9L =0. (4.36)
The derivatives with respect to the distance from the sample back face to the short-circuit
termination can similarly be calculated
[afaa 67+2f_0ﬂ] Oug [8f0a07+ﬂ_8_;9_] 8u§+g_f_ 0b —0 (4.37)
9a 0y 0uy | 08 0uyr "OAL  "dadyOey 0B Oey "OAL  0bOAL ’ '

Jun Oep af ob

(4.35)

“5aL T “9AL T HOAL T (4.38)
and for the second short-circuit position
by gZ’z + bggg’z + %a—ibf =0. (4.39)
The derivatives can be calculated explicitly to yield
of
3=
1 — 3%tanhvyAL
tanh vL + 8tanh 7oA L + 3(1 + FtanhvL tanh ‘yoAL) B
tanh L + Btanh AL + B3(1 + Stanh yL tanh Yol)
(tanhyL + Btanh AL + 3(1 + 3tanhyL tanh y0AL)?
(1 + B*tanhyAL) , (4.40)
of
5 =
3 — B3*tanh~L
tanh vL + BtanhvAL + 8(1 + ftanhyL tanh %AL) B
tanhyL + BtanhyAL + 3(1 + BtanhyL tanh YoL)
(tanh yL + BtanhyAL — 3(1 + BtanhyL tanh yoAL)?
(8 + B*tanh~L) , (4.41)
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of
% =
tanhyoAL — 1 — 23tanhyL tanh oL
tanhyL + ftanh4,AL + B(1 + ftanh L tanh *yOAL)

tanhyL + Btanhy,AL + §(1 + BtanhyL tanh L) g
(tanhyL + Stanh AL — 3(1 + B tanh yL tanh yoAL)?

(tanh AL + 1 + 28 tanh yL tanhyAL) . (4.42)

The following derivatives will be needed in the forthcoming analysis

g% = Lsech®yL , (4.43)

g_z = ysech®yL , (4.44)
E(Z—bl, = yosech®yAL , (4.45)
Ba;i B 80/772 uhl”ro - %;}3 ’ 47
gi B g; 67:70 - 71;1—2 ’ A9
aae_i _ (i_;gé , (4.49)

gfk B 5?; u?ivo ’ 450
aa:;z _ _WQ/;iacfk ’ (4.51)
9y _ _w2/63ac#h ’ (4.52)

Oex 2y
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Figure 4.6: A plot of the derivative of € with respect to |S11] as a function of the distance
from the short-circuit termination for the case of thin samples L < An.

ik e Jug
= —JlPnwlge 7o 4.53
a0, = Pl (453)
o b 0% -
81511‘ b1 01511(1)| ’
O¢€g exp(j61)by
- , 4.55
Sy  azby —arb, ( )
Ipr a; Oeg
ETCATN A TN 4.56
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=" : 4.57
01511(2)1 a’zbl - alb2 ( )

In figures 4.6 and 4.7 ex/8|Sn | is plotted as a function of the distance from the short
circuit termination. We see that in the case of electrically thin samples the minimum
uncertainty occurs when the second sample measurement is at Xo/4 from the short-circuit
termination. As shown in figure 4.7, this is not the case for samples that are not electrically
thin.
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Figure 4.7: A plot of the derivative of € with respect to |511] as a function of the distance
from the short-circuit termination for the case of long samples L = A,.




